
AD-A208 084 REPORT DOCUMENTATION PAGE

.b. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABIUTY OF REPORT

2b, DECLASSIFCATON/OWNGRADING SCHEDULE
Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBO 7a. NAME OF MONITORING ORGANIZATION

Naval Ocean Systems Center NOSC

6c. ADDRESS f llgm tWCce) 7b. ADDRESS f,,1 aaPV0)

San Diego, CA 92152-5000

8a. NAME OP FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Office of Naval Research ONR
Sc. ADDRESS Vab. lA1PCa*) 10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO. PROJECT NO. TASK NO. AGENCY
ACCESSION NO.

Math Info Sciences Division
Arlington, VA 22217 0601153N ST95 RR01405 DN305 106
11. TITLE (i SmdASa* )

AUTOREGRESSIVE SPECTRAL ESTIMATION IN ADDITIVE NOISE
12. PERSONAL AUTHOR(S)

D. F. Gingras, E. Masry
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yo, Mt , DOay} 15. PAGE COUNT

Professional paper FqOM TO March 1989
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (C won woelaminea.,adibykh*Yranm)

FIELD GROUP SUB-GROUP
bearing estimation timc series analysis
array processing
statistics

19. ABSTRACT (Ciwusieseaydi m'b/c,* manmer)

The estimation of the spectral density of a discrete-time stationary Gaussian autoregressive_(AR) process from a
finite set of noisy observations is considered. A modified spectral estimator based on the high-order Yule-Walker
equations is considered. Joint asymptotic normality of this spectral estimator is established; a precise asymptotic
expression for the covariance matrix of the limiting distribution is obtained. The special case of AR(I) plus noise is
considered in some detail.

Published in IEEE Transactions on Acoustics, Speech, and Signal Processing, Volume 36, No. 4, April 1988.

20. DISTRBUTION/AVALABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

] UNCLASSFIEDIo/UPATED C] SAME AS RPT ] DTC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE PERSON 22b. TELEPHONE (hizkAmeCa*) 22c. OFFICE SYMBOL

D F. Gingras (619) 553-2050 Code 733

DD-FORM 1473, 84 JAN 83 APR EDITION MAY BE USED UNTIL EXHAUSTED UNCLASSIFIED
ALL OTHER ED4TIONS ARE OBSOLETE SECURITY CLASSIFICATION OP THIS PAGE



UNCLASSIFIED

SECAJRITY CLASSF)ATION OF THIS PAGE (WI ask &AWd)

19. ABSTRACT (Continued)

DD FORM 1473, 84 JAN UNCLASSIFIED
SECURITY CLASSIiCAMiN OF THIS PAGE (%~mDS*)



T-ASSP,36/4//19015

Autoregressive Spectral Estimation in Additive Noise

Donald F. Gingras

Elias Masry

V411

Reprinted from
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING

Vol. 36, No. 4, April 1988



490 IEEE TRANSACTIONS ON ACOUSTICS. SPEECH, AND SIGNAL PROCESSING. VOL. 36. NO. 4. APRIL 1988

Autoregressive Spectral Estimation in Additive Noise
DONALD F. GINGRAS, MEMBER, IEEE, AND ELIAS MASRY, FELLOW, IEEE

Abstract-The estimation of the spectral density of a discrete-time for the corresponding AR spectral estimate is normal and
stationary Gaussian autoregressive (AR) process from a finite set of calculated its covariance. Berk [5], under the assumption
noisy observations is considered. A modified spectral estimator based that the order of the AR process goes to infinity as the
on the high-order Yule-Walker equations is considered. Joint asymp-
totic normality or this spectral estimator is established; a precise number of observations tends to infinity, Droved that the
q-symptotic expression for the covariance matrix of the limiting distri- distribution of the AR spectral estimate is asymptotically
bution is obtained. The special case or AR(I) plus noise is considered normal with asymptotic variance identical to that of a
in some detail. truncated periodogram.

The problem of AR parameter estimation for the AR
I. INTRODUCTION plus noise case was first examined by Walker [61 who

N this paper, the problem of estimating the spectral evaluated the asymptotic efficiency and variance for the
density of a discrete-time stationary Gaussian autore- parameter estimate of a first-order AR process. Pagano

gressive (AR) process from a finite set of noisy observa- [7], noting that the correct model for an AR (p) plus noise
tions is considered. AR spectral estimation techniques are process is an autoregressive-moving average (ARMA)
widely used in signal processing applications. They are process of order (p, p), developed strongly consistent and
meaningful when the underlying process is well modeled efficient AR parameter estimates through the use of non-
by an AR random process and the resulting spectral esti- linear regression. Lee [81 examined the multivariate AR
mate will exhibit, for small sample size, increased reso- plus noise case and proved asymptotic normality for es-
lution (see Kaveh and Cooper [i1 and Beamish and timates of the AR parameters based on the high-order
Priestly [21) over that obtained by the nonparametric Yule-Walker equations. However, his results, which de-
smoothed periodogram. In practice, the observation pro- pend on a central limit theorem of Billingsley [91, are not
cess has a noise component and the usual noise-free AR substantiated as shown in Section V. For the univariate
spectral estimate is no longer adequate, especially when AR(p) plus noise case, asymptotic normality for esti-
the signal-to-noise ratio is low. A modified estimate is mates of the AR parameters, based on the high-order
considered and its asymptotic statistical properties are de- Yule-Walker equations, was established by Gingras 1 10].
veloped. In this paper, we consider the estimation of the spectral

Let X = {X, } be a real-valued autoregressive density 0( X) of an autoregressive process AR(p) from
process of order p, AR (p), with spectral density 0 ( X) a finite set of noisy observations; the spectral estimate
and let { W }7 n- be a white noise process. The ob- ON ( X) utilizes AR parameters' estimates, based on the
served process Y { Y, } ' -. is defined by { Y, = X, + high-order Yule-Walker equations. The goal of the paper
W } and let t( X) denote its spectral density. The prob- is to establish the asymptotic statistics of the spectral es-
lem being considered is the estimation of the spectral den- timate ON ( X). The organization of the paper is as fol-
sity 0( X) of the AR(p) process X from a finite set of lows. In Section II, the basic assumptions are set down;
noisy observations { Y } '.V the estimates for the parameters and the spectral density

For the noise-free case, the asymptotic statistics for the N ( X) are defined. The main results are presented in Sec-
estimates of the AR parameters were rigorously estab- tion III where the joint asymptotic normality of N ( X) is
lished by Mann and Wald [3]. They proved that the esti- established along with an expression for the asymptotic
mates were consistent, that their limit distribution was covariance. In Section IV, the special case of AR(1) plus
normal and calculated the asymptotic covariance. Akaike noise is considered in some detail, and a performance
141, starting with the asymptotic results of Mann and Wald comparison to the noise-free case is presented. Appendix
[31 for the parameters' estimates, and assuming that the A contains the proofs of certain lemmas used in the
order p is known, proved that the asymptotic distribution derivation of the main results, and Appendix B contains

detailed calculations of variance and covariance expres-
Manuscript received September 16, 1986; revised September 28, 1987. sions. Throughout this paper, vectors are denoted by lower

The work of D F. Gingras was supported by the Office of Naval Research, case letters and matrices are denoted by upper case letters;
Statistical Signal Analysis Program. The work of E. Masry was supported
by the Otfice of Naval Research under Contract N(M014-84-K-0042. both are indicated by b9ldface type.

D F. Gingras is with the Naval Ocean Systems Center, Code 733, San
Diego. CA 92152. II. PRELIMINARIES

E Masry is with the Department of Electrical Engineering and Com-
puterSciences, University of California at San Diego, Lal ;!la. CA92023. Throughout this paper, the signal X = {X,) n= is

IEEE Log Number 8719015. assumed to be a stationary Gaussian AR(p) process. Such
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a process has the representation rp rp " r

Xn - a IXn -i . . ap Xn- p = En; rp I rp ... r2R -= . (9)

wr = 0, 1, - }- - ( )

where the innovations process {E, is a sequence of in- trip I r2p- 2

dependent identically distributed Gaussian random vani- and
ables Sl (0, u). The AR parameters {aj IP=I are con- the (p x 1) vectors a and bare defined by

strained such that the polynomial a = (a, a2, , ap)

P T

A(z) = - , az j (a0  -1) b = (r.+1 , rp+ 2, ,r2J=0 Y}=,
Given a finite set of noisy observations { N >

has no zeros inside the closed unit circle { z: j z 1 5 }. 2 p, we estimate the covariance sequence { rk } using
The spectral density q5 (X) of the process X is given by

/ 7 N-jkj
(o/22r (2) (vk /N , YnY+q, kj _ N- 1

j, e k>N-. (10)

The noise process W {W, is assumed to be a When the elements of the matrix R and vector b are re-

sequence of independent identically distributed Gaussian placed by their corresponding estimates (10), the esti-

random variables DZ(0, a2.). Moreover, the processes X mated matrix and vector will be denoted by RN and bN,
W are assumed to be independent, respectively. Using the high-order Yule-Walker equa-and tions (8), we define the vector estimate d,v of the AR pa-

The observation process Y = { Y, } ... is defined by rameters as the solution of the equation

Y,, = X, + W, n=0,+l,. Rv,, = by. (11)

The spectral density (h) of the process { Y,} is given To estimate the AR spectral density 0( X), we require
by estimates of the AR parameters such as those formed by

( = ,/2ir + k(A). (3) (11) and an estimate of a.. An estimate of a. can be ob-
tained by first using (5) to provide an estimate of at +

The process Y is then an ARMA (p, p) series with rep- 2a. and then using one of the equations (6), say k = p, to
resentation (see Walker [6] and Pagano [7]) obtain an estimate for a2.. This yields

Y,, - a I Y, . . ap Y -p 2 p p
= + 1 a .-- apnj () , -- aN.jN 1 - (/N.p) Z jV.pj  (12)

.... + , a ,ap,- 4 =0 j=0

for all n. Denote the covariance sequence of the series Y where diN.0 = - 1 since a0  - 1. Note that for large N,

by { rk } where rk = E[ Y, Yn -k k. Multiplying (4) through dN.p is necessarily nonzero since dN p converges almost

by Y, -k and taking expectations, we obtain the Yule- surely to ap (see Lemma 1 in Section III below), and ap
Walker (Y-W ) equations: # 0 since the order of the process X is p. The spectral

estimate Xv (A) is now defined by

ro  - a rI r . . a. rp = ao + a;v (5) /2 r

rK - a r,- 1  ap rk- p = -a&O-; i -1.eJ

for 1 : k < p

For the sake of compactness of notation, we let
(6)0 = (a .at, "' , aP) (14a)

r, - a r. -.. ap r p = 0; for k >_ p + I. be the vector of parameters to be estimated and 0\ be its

(7) estimate

The set of p equations in (7) corresponding to k = p + Ov =(,,. ., " a,%.p) (i4b)

I, • 2 p is often referred to as the high-order Yule- In the subsequent development of asymptotic statistical
Walker equations. We express this set in matrix form aU properties for the parameter and spectral density esti-

mates, we make use of the following vectors and matri-
ces, some of which have been defined previously, but are

where the ( p X p ) covariance matrix R is defined by presented here for convenient reference:
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c = (r 0 . r,, , r2,) (15a) = (&2. ,)Tintermsofthecovarianceestimates {rNJ}.
This reduction makes it possible to establish the asymp-

b = (r, 1, rp 2, " " , (15b) totic normality of 0 N and provide a convenient expression
T for its asymptotic covariance E. In principle, one could

a = (a1, a 2, ap) (15c) consider expressing &N, solely in terms of aN (by (12);

a = (ap, ap, • aT (15d) this would require writing the { rNj } in terms of dN) and
then applying the results of [10] for 4N to establish asymp-

d = (r o, r,, , r,)' (15e) totic normality of ON; this approach does not appear to be
T simpler in terms of the complexity of the derivations. In

S(r,, rp_ I, """• r0)r (15f) this subsection, we establish the asymptotic distribution
U( X) = [ukj ( X)]k =0 (15g) for ON. First, we present the asymptotic distribution of thecovariance estimates of (10) as established by Brillinger

u,, ( X) = eik -j)X + ei(k -j X [12, p. 256].
T Theorem 1: For the observation process Y, the covari-

0 = (0, 0, 0) (15h) ance estimate rv.k converges in quadratic mean to rk as N
--co with covariance

where the dimension of the null vector 0 will be clear by

the context in which it is used. lim N cov{ ,.J, f,.j }
In the next section, we make repeated use of the follow- N-.

ing results, regarding convergence in probability -- and i +
=ne n idsrui-27r {eiX(Jk + eik)} 41

2(X) dX. (17)
convergence in distribution --, the proofs of which can J_,
be found in Rao [11].

Proposition 1: For each integer N __ 1, let il, and ,% Moreover, the standardized estimates N I/2( N, I - r,

be random vectors and let a and l1 be constant vectors; N"'(r. 2 - r2 ), • - -N2 ( - r,) are asymptoti-
then cally jointly normal with zero means and asymptotic co-

g P T P variance given by the right side of (17).
TIN -' , - 0 0 (16a) Thus, the standardized vector estimate N1 " 2(,5v - c) of

p P rV P T ( (15a) is asymptotically multivariate normal with zero
TIN -' a, N - = ( (6b) mean and covariance matrix given by

, 0, ;N - -TIN . (16c) lim cov {N/2(cN - c), N'/2(ev - c)T}
N- c.

III. STATISTICAL PROPERTIES

In this section, we establish the joint asymptotic nor- = 2ir U( X) i 2( X) dX. (18)
mality of the spectral estimate v ( X) and provide a
closed-form expression for its covariance matrix (Theo- The following lemma, whose proof is delegated to Ap-
rem 3). Since the statistical properties of the covariance pendix A, establishes the almost sure convergence of
estimates ? V.k (10) are well known (see Brillinger [121), AN 1 and aNvk as N - oo. We remark that R- exists (see
the method of analysis adopted in this paper is to establish Gersch [13]).
asymptotic equivalence in probability between the error Lemma 1: AN' exists almost surely for large N and
vector (dv - a) and appropriate linear combinations of converges to R- as N - cc almost surely. Moreover, the

{v.k - rk k =0 (Lemma 2); similarly, we establish such AR parameter estimate aVNk converges almost surely to ak
an equivalence relationship for the innovation variance's as N -" cc for k 1, , p.
error a,., - a& (Lemma 3). Using these relationships, the We next construct a random vector N1 ',ZN that is equiv-
statistical properties of the errors (d, - a) and N., - alent in probability to the high-order Y-W AR parameter
a2 can be established from those of { v. }. These two estimate vector N'/ 2( dv - a). The proof is given in Ap-
lemmas and their derivations are the crux of the analysis pendix A.
leading to the main result (Theorem 3). For the sake of Lemma 2: Define the vector random variable zN, by
readability, we have delegated the complex derivation of
Lemma 3 (as well as that of Lemma 2) to Appendix A. ZN = R 'D(ev - c) (19)

A. Statistics of Parameters' Estimates and the matrix D by

It should be noted that in [10], the asymptotic normality D
of the AR parameters' estimates (IN) was established. 0 -a -0
However, this result does not lead directly to the joint F -a -a, , -a1  1 0
asymptotic normality of &2 ., and d, in view of the depen- = 0 -a .. a. -, 1 0 o .•
dence of ,., on a.v as well as on the covariance estimate
(101, poid an aprpit asmttcrdcinoi{. }- Lemmas 2 and 3, which were not developed in
[101, provide an appropriate asymptotic reduction of 0, - 0 0 ..• 0 -ap .... -a,
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Then where N is defined in (21). Thus, it follows from (28)

N' 2 1(tiv - a) -zNI 0asN - 00. (20) and (29) that

We previously established an estimate (12) for the vari- N'/ 2 (6N - 0) -[ (eN - C) 0 as N - .
ance a. The next lemma, whose proof is given in Ap- R-DI
pendix A, establishes the existence of a random variable F 2(N oNI/2t(i 2  From Theorem 1, we have that N'/2( N - c) is asymp-

N that is equivalent in probability totically multivariate normal; therefore, by (16c), it fol-
Ua ). lows that N'I 2 (ON - 0) converges in distribution to a

Lemma 3: Define the random variable N by multivariate normal vector with zero mean and covariance

= h r(eV _ c) (21) matrix E which, by (18), is given by

where (,T) _ (/a)(aT, -1, OT)= 27r h T U(X) [h, Dr(R-)] :(X) dX.
h = -- ,ar, 0T [ Ia)d 1 T R-tDl

+ a T o 
(30)

+ (d+ (l/ap)d) - I D The result follows. E

2 T Theorem 2 establishes convergence in distribution of
+ (1/ap)(( -1, aT) d) [R -'D]P) (22) the vector estimate N"/2 (6N - 0). It should be noted that

a is the covariance matrix of the asymptotic distribution.
This does not necessarily imply that the covariance of the

N',2j(eT2,- a- 2) - 0 as N - oo. (23) vector estimate N t"2(, -V 0) converges to 12 of (30) (see
Serfling [14, p. 20]). For the sake of simplicity, however,

The following result establishes the asymptotic nor- we refer to E2 as the asymptotic covarianc;, matix instead
mality of the vector estimate 0 ,v. Its proof relies on the of the more accurate expression "covariance matrix of the
equivalence relationships of Lemmas 2 and 3.

Thuivaere 2:reltndizd (p +a 1) ad 1) v asymptotic distribution." Similar terminology is used inTheorem 2: The standardized ((p + I) x I) vector
connection with the asymptotic properties of the spectralestimate N' "'( 0,, - 0) is asymptotically multivariate nor-

mal, that is, estimate.
The components of the asymptotic covariance matix .

N' 2(0, - 0) 91 (0, .) as N - oo can be evaluated using expression (3) for the spectral den-
where sity ( X). The detailed evaluation of these terms is pre-

sented in Appendix B.
S2 ST ](24) B. Statistics of Spectral Density Estimate

I s G We now establish the joint limiting distribution of the

and spectral estimates ,v ( X ), ' " '.I ( ,r) at r distinct fre-
quencies X, " , X- We make use of the following

2w hTU( ) h 2(X)dX (25) theorem on nonlinear transformations of asymptotically
,h)_normal variates (Serfling [14, Theorem 3.3A]) which we

recast in our notation in the next lemma.
s 2 R-'DU(X) h k 2(X) dX (26) Lemma 4: Let 6N = (NJI "'", • ,) T be jointly

,_ asymptotically normal random variables with mean vector
IT T 0 and covariance matrix L, i.e..

G 2r ), R-DU(X) DT(R-)rV(X)dX. (27) N' (6,, -0). N (0, L) as N_ -o.

Note that the dimensions of the matrices L and G are ((p Let g(x) = ( gI(x), . X) g(x)) .x = (x., "' ) ,,)T

+ I) X (p - I)) and (p X p), respectively, be a vector-valued function for which each component

Proof: By definition, we have g,(x) is real valued and has a nonzero differential g, 0.
T) at r = 0:

N' ( - 0) = N' -a] "
da\ -a g'(0: T) =Z 7J =1 ax ,J =0r

by Lemma 2. we have T
b for any vector T = (ri. , Tm)

N' 21(aN - a) - Z,,N 0 as N - o (28) Put

where z, is defined in (19). Also, by Lemma 3, we have L , --

N' (6., - g2) - OasN -o (29) 1 ,o .m
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Then and provides explicit expressions for the variance/covari-
g(&,) = (g(9v) . g())r ance of the joint asymptotic distribution. Using the de-

composition (24) for E, we have that the asymptotic co-
is jointly asymptotically normal with mean g(O) and co- variance function of N'/2[$N(X) - 0( X)] and
variance matrix F T. i.e., N' 2[ (v) - 4(v) ] appearing in the asymptotic distri-

N' 2(g(6v) - g(0)) 91(0, FIT) as N -* o. bution (31) is given by

Theorem 3: The standardized spectral density esti- acov (X, P)= 0(X) (v) {(v2/a)

mates N' I. C X,), " , N' 2 .v ( Xr) are jointly asymp- + er(h) s/ + (
toticallv normal, as N - co, with means (i) ,
'b(X,) and covariance matrix +I-F, i.e., ± er(X) Ge(v)}. (34a)

N' -k\(hI) - , , and if we set X = v, we obtain the asymptotic i riance
avar ( X) ofNI/2[ C X, -/( 2)[ asN [ .v x') X 'h )] I TqL 0 , F )  (3 1)

avar (hX) = 0,'(X){(t,2 /U4) + 2erT(X) S/02
where the r X (p + I) matrix F is given by a +

F = (p(1,), . , p(Xr))
T  (32a) + eT(X) Ge(X)} (34b)

and the (p + 1) x I column vector p( X) is defined by where v 2 , s, and G are given by (25), (26), and (27),

p(X) = (h)[1/a. e(/)] (32b) respectively.
Equations (34a) and (34b) represent fundamental

with closed-form expressions for the asymptotic variance and
iX e'' e, (3c covariance functions, appearing in the joint asymptoti-

e( X) = 2 ReAA ex .( cally normal distribution of the spectral estimate of an AR

( 2R A(e' ej process in the presence of additive noise. Their complex-

Proof: Let m =- p + 1. By Theorem 2, we have that ity, however, does not allow simple interpretation. Thus,
in the next section, we specialize to the case of a first-

N"'2(0,% - 0) 91(0, L) as N - o (33) order AR process and examine the dependence of the
where 0 and 6N, are given by (14). Now the spectral den- asymptotic covariance function acov ( X, P) on the fre-
where 0 and is, arelgivendbyu(14).ow the petr en- quencies X and v and on the values of the AR parameter
sitY 0 ( Xk ) is a real-valued function of the parameter vec- a
tor pX, i.e., 4( Xk) = kk( I) where

.t0/27r IV. THE AR(1) CASE
[1(~ 2te '" The first-order AR process has the representation

- u e ueijXk X,- aX~. ,, (35) -,
j= X (35)

It is seen that the partial derivatives where the AR parameter "a" satisfies the condition - I

a4k(U) 1< a < 1. The spectral density for 0( X) is given by
a tijj a=O',.' po/2r

2(X) =. (36)

exist and are continuous in a neighborhood of pt = O. [a2 - 2a cos (X) + 1]
Moreover, the gradient vector In this case, the asymptotic covariance function acov ( X,

I ak(O) aOk(O) 1 v) can be expressed directly in terms of the parameters a,
NO) a00 ' f, j O,.We have

is given by (32b), i.e., Pk(O) = p( Xk). We note that acov (X, ,) - X) 0(p) v2 + 47rsO ( X)
e( X) of (32c) actually depends on 0 via A(eix) which is o4

a function of (a, }P= [cf. (14a)]. Thus, p ( X) of (32b)
depends implicitly on 0. Since at least the first component
of pk( 0 ) is clearly nonzero, it follows that the differential [cos (v) - a] + (47r) 2GO( X) t(P)

gk(O. T) p[(0)T [cos (X) - a] [cos (Y) - a]} (37a)

is nonzero for each k = 1,• , r. Lemma 4 now applies avar (X) (X) {t 2 + 8rsk( X) [cos (X) - a
with the identification gk(X) = Ok(X), and the result fol-
lows from (33). E + (4r) G 2 (X) [cos (X) - a]} (37b)

Theorem 3 establishes the joint asymptotic normality of
the scaled spectral estimate errors N' '[Ibv ( X) - 0( X) I where the scalar constants G, s, and v2 are given by
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G= (1 -a 2 ) (38)
a

O3 {-3(l + 2) + (I + 2a) ,"

+ ~(1 - a2 ) (uW/a)"} (39) 5

2 3a 2 + 1 2(1 + a2) 2

t= at1 a'(I - a 2) a(1 - a 2) U A

(1 + a2)2  
2 2  2a 4 - 1

+a4(1 a a2 ) 'y + a23 - = 1.0 radians

4a 2 
- a + 3 4(1 + a2 ) A - 2.8 radians+ a4

a a 2 L L L L L L
.4 2 -_05 0.15 0.25 0.35 0.45 0.55 0.65 0.15 0.85 0.95

+ - W (wo)y -f AR PARAMETER

Fig. I. Normalized asymptotic variance avar X)/0
2
( X), (37b), versus AR

* .(1+ a2
a4 + 2a6 (40) parameter value; signal-to-noise ratio is one.

where where now

/02 (1 (a 102)2 4)) G = (I a 2)/a 2

-y {I + 2(a2/Vt)(l - a2) + (I~/)(1 - a')}.

From (37b), we see that the asymptotic variance (a ) a'))

expression is composed of three terms. The first term v= a
( l/a,)4 6d2 ( X\) V 2 represents the contribution due to esti- I + a + 4a + 2a 3 + 6a4 + 2a' +

mating a;, the second term + 2a+(l/o,)-Srs03(X)[cos (X) - a] + a4(l + a)
. ~ 2 (42c)

is due to the covariance between the estimates &2 and ii,

and the third term On the other hand, for the classical AR spectral estimate,
C2 which uses the standard Yule-Walker equations, the

1/a,) (47r)_04( X) [cos ( X) - ] asyrnptotic va.'riancc is algin given by (41), but with

represents the contribution due to estimating the AR pa- G - (1 - a2 ) (43a)
rameter "a."

We see that even for the AR(I) case, the asymptotic s - 0 (43b)
variance expression for the spectral estimate, as given by v 2a f (43 c)
(37b)-(40), is a complicated function of the process pa-
rameters. To provide insight into the relationship between (see Akaike 14D. Fig. 2 plots the ratio of the two asymp-

2 totic variances [(41) in conjunction with (42) divided bythe asymptotic variance and the process parameters a, or"
U2, and X, we evaluated (37b)-(40) for a few parameter (41) in conjuction with (43)] as a function of the AR pa-cases, rameter "a" for a wide range of frequencies. It can also

The dependence of the asymptotic variance on the sig- be seen from (42) and (43) that this ratio tends to infinity

nal-to-noise ratio a,2/[( 1 - a 2 ) a' I is fairly clear from as a - 0 and approaches 5 as a -- 1. The larger asymp-

the expressions (37b)-(40) and is expected to be mono- totic variance of our spectral estimate is basically due to

tonic. Fig. I exhibits the normalized asymptotic variance the use of the high-order Yule-Walker equations as seen

avar ( X)/0 ( X) as a function of the AR parameter "a" from the expressions (42) and (43) for G and v".

for a wide range of frequencies; the signal-to-noise ratio V. COMMENTS

is set to 1. More interestingly, we wish to compare the
normalized asymptotic variance avar ( X)/0 2( \) to the It was noted in the iitroduction that the results of Lee

classical case of AR spectral estimation with no noise. If [81 regarding the asymptotic normality of the AR param-

we set a2. = 0 in (37b), we have for our spectral estimate eters in a multivariate AR plus noise model are not sub-
(13), which uses the high-order Yule-Walker equations, stantiated. We elaborate on this point in this section. In

high-order equations, order to prove the asymptotic normality in question, Lee
avar (f) (4( )/4) {vZ + 8irso ( X) [cos (X) - a] [81 invokes Theorem 21.1 of Billingsley [91. This result

(41)2 Go r establishes a central limit theorem for certain nonlinear
(N)[cos (N) - a]; (41) transformation i1, =f(" • • , ,,_, ,. , , I* " ") of
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where M, is the (i, j ) th cofactor of R. The matrix R is
estimated by RN =[rN,p+ i_ I =, where rNk is given by
(10). Whenever RN is nonsingular with probability one,

4 we write
A - r adians ,= [..I

where

(-1) det [ Nj.i /det [RN]. (Al)

2 By Parzen [15], rk converges to rk almost surely as N
00; hence, det[ RN I converges to det [RI almost surely
as N - 0o. Since det [RI # 0, as indicated above, we
have that with probability otie, det [RN ] 0 for suffi-
ciently large N. For such an N, (AI) is clearly well de-

S 1 1 . I , , fined. Since det [ Iv, ] converges to det fM., I almost

0.05 0.15 0.25 0.35 0.45 0.55 0.65 o.7s 0.85 0.95 surely as N - o, we have from (AI) that

AR PARAMETER W ".,. -- ( - )' det [M,, ]/det [R] =w,,,

Fig. 2. Ratio of as) mptotic variances. (41). %% ith a" = 0disided b, (41)
for the noise-free case versus AR parameter %alue. almost surely as N - o.

Since for large N, dy = RN b,, the almost sure con-
vergence of dn to a as N -. o follows from the almost

stationary 0-mixing processes { ,}. In order to use it, sure convergence of / and b\ to R-' and b.
Lee [81 should have shown that his observation process respectively.
I y, } (an ARMA ( M. M ) process) is 0 mixing and its )- Proof of Lemma 2 Define the vector t, by
mixing coefficient 5, satisfies

= = (d .,- a) - R -D(es - c). (A2)

0" 2: < C. By Lemma 1, k,_ exists with probability one for large N.

(Billingsley [9, Theorem 21.11). Lee [8, eq. (AI0)- Thus, for large N, we can write

(A 19). unfortunately. is silent on both points. In fact, v a. bv. (A3)
Lec co;ld nr.t have proven that these two conditions are Using (A3) in (A2), we get
satislied since it is known (see Gastwirth and Rubin [161)
that no( even AR processes are 0 mixing. Consequently, VN = (RN'b, - a) - R -D(. - c)
Lcc's invocation of Theorem 21. of Billingsley [91 is not = N (b - N) - R 1D(e\ - c).
:i all ', h\,,Iai e,I and neither is his principal result.

By the definition of D in th; Iaimma and (15a), it can be
VI. CONCLUSIONS seen that D(,v - c) = bN - iva; thus,

'[Tic rcstdls preseItcd in this paper establish the joint
asympi lic noriIalil) ot AR spectral estimates for the case VN R D(eN - C) - R'D(eN - c)

o no,,y ohscrations tsing the high-order Yule-Walker
equaions- i picise asymptotic expression for the vari- D(e - c)

ancc otl the limiling distribution is obtained. The paper By Lemma 1, A N1 
' R - almost surely as N - oc,

extcnds the prcN ions noisc-free work of Akaike [4]. and by Theorem 1, N1 2 (,,v - c) converges in distribu-

The assuimption ol normality on the processes { X, } and tion: thus, by (16a) applied to each component of v.,, we

{W, is not implicitly required to obtain asymptotic nor- have that

mality ot the spectral estimate. However, in case these N r
' 2j v.v - 0

processes arc not Gaussian. the asymptotic covariance
(17) in Theorem I for the estimates ,k will contain an probabilya N By The reul follows. e
additional term involving the fourth-order cumulant of the Proof of Lemma 3: By (5), (6). and (12), which exist
process I Y, }I(see bi i!inger [!21); thik term will propa- for large N, we have
gate via Lemmas 2 and 3 to the asymptotic covariance of - P

-, -Z Y-1 v1 -(/c~ a.%., r%
the spectral estimate (X). v.,, _ a

APPENDIX A p
+ a r, + lap) a r

Proof of Lemma 1: By (9), we have R = = 0 + ( ) ar P -

r , ") 1 ], . By Gersch [131. the matrix R is nonsin-

gular; let R = [w,, I P),. Clearly, = -(-ladk)dv. (l/ci 5v)(-I, i., )d

= (--t) 'det [M., I/det [RJ + (1-, ar) d + (Il/ap) (-, a ) d.



GINGRAS AND MASRY AR SPECTRAL ESTIMATION IN ADDITIVE NOISE 497

Expanding I/dvp in a Taylor series As N -. o, we have d ---, almost surely by Parzen [15],

1 = 1lap + (l/',)(fi.. - a) iN -- a almost surely by Lemma I, and N (dN.p - a,)
converges in distribution by Lemma 2. Moreover, I -yN -

where E. e (d. p. ap), we obtain ap I s I aN.p - apI so that, as N -- , N -. ap almost

- = T, + T, + T3  surely since the right side tends to zero by Lemma 1. The
result (A10) now follows by (16a).

with By (A5), (A8), and (A 10), it follows that
T, T-(-1 )d + (-1, a )d (A4a) N! 2  t - -•N 12(62, -- 2) - B, - B, - B,

T I /ap - 1, iT + (-1 at)d] (A4b) - B4 -B 51 0 asN- co. (All)

= --(. I )(. - a) ( - 1. i ) d . (A4c) By the definition of B2 and B4, we have

We first show that N'1(B, + B4) = N' '2((_1, aT)  d)

N' 2 T, + B, + B,1 P 0 as N - oo (A5) + (l/ap)(-1, aT)(v - d))
v here and by augmenting the vector ( - 1, aT), we write this in

B, = 1-l.a) - ( Ia))d (A6a) the form

T2 N I 2(B, + B 4 ) = N' 2(( 1, aT, 
0 T)B = - 1. ar) d d). (A6b) +( l )( , _1 T)( " _C

We have by (A4a) and (A6), after collecting terms,

N' T, + B, +B1 = N' 2(h1 + hr)(d - c) (A2)

= N' (( a1, a ) 1 ))(d - d)l where
S I w h) ,(A7) = (-1, a T.oT)T (Al3a)

- -I aT) h = (l/ap)(d r , -1 0 r)T
.  (Al3b)Since by Lemma I we have 1(-lI'a6) -~ P(- lap) (- T, 1 T . ( b

0. and by Theorem 1. N' 2(d. - d ) converges in distri- Next by the definition of B, and B3, we have
bution as N - . (A5) follows by (16a). N,( (

Next we show that N' (B, + 83) N' + (I/a) 3)
N' ! T. + B3 + B41 - * 0 as N -* oo (A8) N(( , )T (-,aT)T)}.

where We need to express this in terms of ( - c). To this end,
we note that by Lemma 2, we have

83 = (l/a,)((-1, ) - (-1,1a))d (A9a)

B4= (l/ap)(-L, a")(dN - 3). (A9b) N',-[(-1, ) - (, at)]

We have by (A4b) and (A9), after collecting terms, [o 0

N' 2j 7 + B3 + B4I (,,-c) o

= N' (l/ap) {((-1, a ) and thus,
P

( - 1. r)) (d -d } N'B, + B, - h -c)- 0 as N -c

The result (A8) now follc.vs by the same argument em- (A 14)
ployed earlier for (A7).

Now we show that wherep /
N' 21T, + B, IP 0 as N -- (AIO) h= (d + ad) r . (Alc)

where R I

Bs I /ap)-(d,.p - a,) ( 1, aT) d. Finally. by the definition of B5. we have

We have N' 2B5 = N' 2[( l/ap)2(d, - a,)( - L ar) Td

N' 21 T, + Bsj = [(l/ap)( -1. ar ) d  and by Lemma 2, we have

)2( N' 6Td - a , i. N [R'D] (,  - a0)
N' 2(d, -ap) - 'D] (e,. - c)! P 0 as N -"
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so that where by (2) and (3)
N'1 - h c( - c)2 B 0 as N - (A S) r "

where r 1 (m) = (1/2w) o, 3A(e- )ei"X (B3)

h,=(lip) Ta
) d[R - 'D]T). (Al3d) T (l/2 r)2wOP,()= ( 2r ae-\ dA (134)

Thus. with h = h, + h' + h 3 + h4, the result follows A(e
from (A 1l) using (A12)-(A 15). r4 eiMX

APEDxBT 3(m) = (1/2r), 1 3 [Aei 2dA. (B5)

In this Appendi., the evaluation of the covariance Evaluating each term (B3), (B4), and (B5), we get
expressions I,, s, and G. stated in (25), (26), and (27). p p
is -iven. The following lemma is needed. T, (M) = ('k/2"r ) j - m) x

Lemma BI: We have k= =

a) 2r A'(e -1) elx ('(X) A0; m > 2p

0; m > 2p 0 Z akam&; p <mr <2p
0 - = k =rn-p

p p0. akamk; p<m<2p aw>Zaka,.k; 0 < m p.
M > p k=0

2uf 4 aka, k; p_<am + 2p a (B6)
0

k = 0 Next
+ 4 Ce2,'O 0 5M: 2 2 A (e -'iX

tac, 0 .; 0<m<p T2 (m) = (2 wva/2r) A (eix eimx d

b) 2r A(e &x) A(eX) eimx 2 ( X) dX and by (BI) and exchanging of integration and summa-
tion, we have
T2rm( m 2 2 Pp e i( - m)

T2(m) (2wo,/27r) Z _Z ak Cj e j X
t a2rr, a , akak+ w + Ujy.W(

5
o,:

k 0; m > pA 2 2

'.. 2uw or , m =p (B7)fp
c) 2r3 A(e' x ) A(e -t 'X) e(n-m)x\p2( X) d 2 2 0, 2orwo, Z k=,,a,;. 0 :5 m < p.

p - n - , !
k For T3 (m), we have
k =0 T iMX

+ 2w,., + arr, T3 (m) = (o/27r) - x) e) d
+ a 1 a 1r,, - [A (e XFwhere the ak } P= I are the AR parameters of (I), (a0

- k ). the { } ()0 are the cocfficients of the power series 0; m >0
expansion for I1A (z). and 6, m is the Kronecker delta. = (B8 =0

Proof: In the course of the proof, we require the
power series expansion by (BI). The result follows by (B2)-(B8).

b) Let
I/A(:) = ' .k .  (BI)

k 0 T(m) = 2w A(e'\) A(e - ) etmX\( X) dX
Since A(,-) is a polynomial of order p with no zeros in

z: I }. then the expansion exists and converges - Tin(r) + T2 (m) + T3(m) (B9)
uniformly in Iz < I.

a) Let where by (2) and (3)

T(m) = 2r A2(e-'x) elx 2 ( X) dX T,(m) = (1/2-) a4', A(e"×) A(e-'x)ee'-), A

TI(m) + T2(m) + T3(m) (B2) (BiO)
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0r B. Evaluation of s
T12(m) = (l/2r)2~va I e'm dX (BI) Put

T3 (m) = (1/2r) 4 a'e3  e ei ) dX. (B12) I = 27r D DUh 2 ( X) dX.

Proceeding as in part a), we obtain Then by (26), s = R-1q and we evaluate q1 explicitly.
Using the definition of the vector hT from Lemma 3, we

0; m > p have

a. p akak ,,; 0 - m :5 p (B13) 1 T rTOT)UDT2(

(0 = O 2 r X d(. 0;T _ 1r, -l a , O T r 2) dT 2), j

T (M) > 2 (B14) - (27r/ap) (a, - 1,O) UDT~k2(X)JXT2m)=2awatl M= 0 -1

and + 27r (d + (l/ap) dT) L-]

r,, (BI5) D '
TI(m) = 2 ro- or 2 aBIS) DUDT2 (X) dA

and the result follows. + (27r/ap) ((-1aT) d) [R-'DI p

c) The proof follows directly from that of part b). -

I!DT' 2(X) dX
A. Evaluation of G PT + pr + PT + PT (B19)

For notational convenience in the calculation below, we

will not display the dependence on X for the matrix U. Set For 13f using the definition of U and D, the nth elemen!

of (-1, aT, OT) UDT is given by
B 27r 3 DUDT4 2(X) dX; (B16) ((-1, a TO) UDT) = A(e') A(e-'X)e ' (Pn 1 x

then G = R-IB(R-I)T by (27). We evaluate explicitly + A2(eix) ei(P*+" l)X.
the elements [B]n.m of B. We denote the n,mth element Using parts a) and b) of Lemma B, we then have
of the matrix DUDT by

p
2p 2p (lT _ 

2  
-4

[DUDT1" = Z Z dZ IU dn k- (
[D ~k=0i~ 1=0 kjd, T ~ ~

For I2' using the definition of U and D, the nth element
n, m = 1, 2, p of(aT, -1, OT) UDTis given by

where df.k is the n, kth element of the matrix D and Ukj is ((a T, -- 1, OT) UD), = A 2(e - 'x) ei( 2p +n - 1X

the k, jth element of the matrix U. Using the definition of
U (15g) and D (Lemma 2), we have + A (e - X) A(eiX) e -

'J
' Ix

I ik Using parts a) and b) of Lemma B1, we obtain
[DUb Znm = k,, ak.

k P
pT), = 0 -(1'a) Z akak _ (a;/ap) r. 1.

ap>1 _. .(e ij
_

" + e-'JX)
(B21)

= A( X) For 1T using (B16), it follows that

+ A(e ') A(e ' x)e l(nm- . (BI7) T = (d T + (lap)d ) R T B (B22)

Substituting (B 17) into (B 16) and using parts a) and c) of
Lemma BI, we obtain the final result: where B is given in (B18). For , we can write

p -In-m I Cr
[B] ,,.m = (2 7 la (( -1. a7 ) d)

+ + k (0 [ X) d
2 26m 2 UT2awo ,, + a rn_, . (BI8) •[R-] DV X/'() dX
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and by (B16), it follows that Similarly, for 72, we write

P = T2= T21 + T22 + T23 + T24. (B27)
(I la) Za ,_ R JB. (B23)

J=oP Using (Al3a)-(Al3d), Lemma B, and P2 from (119),
we get

Thus, s = R -l where q is given by (B 19)-(B23). T21 = TI 2 (B28a)

C. Evaluation of v 2 p -

By (25) and the definition of h = hl + h, + h3 + (4  + 4 a + -

[cf. (A13)]. we write (a LZ +
(B28b)

V2 2r hUh ti2(X) dX T23 = (dT + (l/ap) dT) O1 I12

+ 27r hrTUh., 2( X) dX LRI (B28c)
+T24 = (1'ap)3Lzajrp-j[R 'Pll, (B28d)

+ 2w hTUh3V2(X) dX Using (A13c) for h3 , we write

+ 2r hUh 4 k(X) dX T3 = 2r h rUD -1 (d + (I/a,)d) 2 (X) dX,

- T, + T, + T3 + 74. (B24) but, by (26), we have that

For T1 we have = 27 hUD(RI)T 2(X) dX;

T, 2r h T Uhl 02'( X ) dX hs
2w ~aT~htk2(~dXthus,

T = (0, ST)(d + (lap)d). (B2,+ 2wr lhUhlp 2 (X) dX
Using (A13d) for ha4 , we write

+ 2r hrTUhtik2(X) dX 174 = 2l hJV[Dr(R- I /ap) 2

+ 27r hTUh t.(X)dX p
_,a •p ar _j  X2() dX.

T 1 + T12 + 13 + 14- (B25) As above, by (26), we obtain

Using (Al3a)-(Al3d) for hI, h2 , h3, and h4, applying p
Lemma BI, and using P3, from (B19), we obtain T4 (T)p(I/ap) 2 j= arj (B30)

P U

T, = &I . + a, + a,-ro + a k, Z a + 2oawiv Thus, v= 7i Twhere the expressions for T are given
k -0 by (B25)-(B30).
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